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About Me 

ÅSenior Security Researcher at Azimuth Security 

ÅRecent focus on Apple iOS/OSX 

ÅPreviously done research on Windows 

ſWindows 8 Heap Internals (w/ Chris Valasek) 

ſhttp://mista.nu/blog  

ÅIn the program committee of a few conferences 

ſWISA 2013 ( http://www.wisa.or.kr  ) 

ſNSC ( http://www.nosuchcon.org  ) 

ÅMSc in Information Security from GUC J 

http://mista.nu/blog
http://www.wisa.or.kr/
http://www.nosuchcon.org/


iOS 6 

ÅApple released iOS 6 in  
September 2012 

ÅLarge focus on security improvements 

ſE.g. offers kernel address space layout 
randomization (KASLR)  

ÅPrimarily targets strategies employed in 
«jailbreaks»  

ÅAdditional security improvements in iOS 6.1 

ſE.g. service hardening (plist  signing) 



evasi0n Jailbreak 

ÅFirst public jailbreak on iOS 6 

ſReleased February 2013 

ſhttp://www.evasi0n.com  

ÅAllows users to run unsigned code without 
sandbox restrictions 

ÅComprises several components 

ſInjection vector, persistence (survive reboot), etc. 

ÅKernel exploit used to gain full control of the 
operating system 



Talk Outline  

ÅPart 1: iOS 6 Kernel Security 

ſKernel Address Space Layout Randomization 

ſKernel Address Space Protection 

ſInformation Leak Mitigations  

ÅPart 2: evasi0n Kernel Exploit  

ſVulnerability  

ſInformation Leaking Strategies  

ſGaining Arbitrary Code Execution  

ſExploitation Techniques  



Recommended Reading 

ÅPresentations/Papers 
ſiOS 6 Kernel Security: A Hackerôs Guide 
ſDion Blazakis ï The Apple Sandbox 
ſCharlie Miller ï Breaking iOS Code Signing 
ſVarious iOS talks by Stefan Esser 

ÅBooks 
ſiOS Hackerôs Handbook 
ſA Guide to Kernel Exploitation: Attacking the Core  
ſOS X and iOS Kernel Programming  
ſMac OSX and iOS Internals: To the Appleôs Core 



Attacking  the iOS Kernel 



Kernel ASLR 

ÅGoal 

ſPrevent attackers from modifying/utilizing data at 
known addresses 

ÅStrategy is two-fold  

ſRandomize kernel image base 

ſRandomize base of kernel_map  



Kernel ASLR ð Kernel Image 

ÅKernel base randomized by boot loader (iBoot) 

ſRandom data generated 

ſSHA-1 hash of data taken 

ſByte from SHA-1 hash used to calculate kernel 
slide 

ÅKernel is rebased using the formula: 
0x01000000 + ( slide_byte * 0x00200000)  

ſIf byte is 0, static offset of 0x21000000 is used  



Kernel ASLR ð Kernel Image 

ÅCalculated value added to the kernel preferred 
base later on 
ſAdjusted base = 0x80000000 + slide  

ÅKernel can be rebased at 256 possible locations 
ſBase addresses are 2MB apart (ARM cache 

optimization)  
ſExample: 0x81200000, 0x81400000, é 

0xA1000000  

ÅAdjusted base passed to kernel via boot 
argument structure  



Kernel ASLR ð Kernel Map 

ÅUsed for kernel allocations of all types 

ſkalloc( ), kernel_memory_allocate ( ), etc. 

ÅSpans all of kernel space 

ſ0x80000000 -> 0xFFFEFFFF 

ÅKernel-based maps are submaps of kernel_map  

ſzone_map, ipc_kernel_map , etc. 

ÅInitialized  by kmem_init () 



Kernel ASLR ð Kernel Map 

ÅGoal: Make kernel map allocations less 
predictable 

ÅStrategy: Randomize the base of the kernel map 

ſRandom 9-bit value generated 

ſMultiplied  by page size 

ſResulting value used for initial kernel_map  
allocation 

ſ9 bits = 512 different allocation size possibilities   

 

 



Kernel ASLR ð Kernel Map 

ÅSubsequent kernel_map  (including submap) 
allocations pushed forward by random amount  

ſAllocation silently removed after first garbage 
collection 

ÅBehavior can be overridden with «kmapoff» 
boot parameter 



Kernel ASLR ð Kernel Map 



Kernel Address Space Protection  

ÅGoal: Prevent user-mode dereference 
vulnerabilities (from kernel)  

ſE.g. offset-to-null  

ÅPreviously, kernel and user shared address space 

ÅNULL -dereferences were prevented by forcing 
binaries to have __PAGE_ZERO section 

ſDoes not prevent dereferences above this section  



Kernel Address Space Protection  

ÅIn iOS 6, the kernel task has its own address 
space while executing 

ſTransitioned to with interrupt handlers  

ſSwitched between during copyin() / copyout() 

ÅAlso configurable on 64-bit OSX with the 
no_shared_cr3  boot argument 

ÅUser-mode pages therefore not accessible while 
executing in kernel mode 



Kernel Address Space Protection  



Kernel Address Space Protection  

ÅARMv6+ has two translation table base registers 

ſTTBR0: process specific addresses 

ſTTBR1: OS (kernel) and I/O addresses 

ÅOn iOS 6, TTBR1 is mirrored to TTBR0 while the 
kernel is executing 

ÅTTBR0 is set to process table during copyin() / 
copyout() 

ſAlso switches ASID to prevent cache leaks 



Kernel Address Space Protection  

ÅMemory is no longer RWX 

ſKernel code cannot be directly patched 

ſHeap is non-executable 

ſStack is non-executable 

ÅSyscall table is no longer writable 

ſMoved into DATA const section 



Information Leaking Mitigations 

ÅGoals 

ſPrevent disclosure of kernel base 

ſPrevent disclosure of kernel heap addresses 

ÅStrategies 

ſDisables some APIs 

ſObfuscate kernel pointers for some APIs 

ſZero out pointers for others  



Information Leaking Mitigations 

ÅPrevious attacks relied on zone allocator status 
disclosure 

ſhost_zone_info () / mach_zone_info () 

ÅAllowed attacker to determine the number of 
allocations needed to fill a particular zone 

ſUsed to defragment a heap 

ÅAPIs now require debug access (configured 
using boot argument) 



Information Leaking Mitigations 

ÅSeveral APIs disclose kernel object pointers 

ſmach_port_kobject ( ) 

ſmach_port_space_info ( ) 

ſvm_region_recurse ( ) 

ſvm_map_region_recurse ( ) 

ſproc_info( é ) 

ſfstat( ) (when querying pipes) 

ſsysctl( net.inet.* . pcblist  ) 



Information Leaking Mitigations 

ÅNeed these APIs for lots of reasons 

ſOften, underlying APIs rather  than those 
previously listed 

ÅSome pointer values are used as unique 
identifiers to user mode 

ſE.g. pipe inode number  

ÅStrategy: Obfuscate pointers 

ſGenerate random value at boot time 

ſAdd random value to real pointer  



Information Leaking Mitigations  
/*  

 * Initialize the global used for permuting kernel  

 * addresses that may be exported to userland as tokens  

 * using VM_KERNEL_ADDRPERM(). Force the random number  

 * to be odd to avoid mapping a non - zero  

 * word - aligned address to zero via addition.  

 */  

vm_kernel_addrperm = (vm_offset_t)early_random() | 1;  

 
#define  VM_KERNEL_ADDRPERM(_v)  \  

 ((( vm_offset_t)(_v) == 0) ? \  

  (vm_offset_t)(0) :  \  

  ( vm_offset_t)(_v) + vm_kernel_addrperm)  

 
/*  

 * Return a relatively unique inode number based on the current  

 * address of this pipe's struct pipe.  This number may be recycled  

 * relatively quickly.  

 */  

sb - >st_ino = (ino_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);  

Example use: obfuscated 
pipe object pointer  

Macro for obfuscating 
kernel pointers  

Generate random value 
at boot time 



Information Leaking Mitigations 

ÅOther APIs disclose pointers unnecessarily 

ſZero them out 

ÅUsed to mitigate some leaks via sysctl() 

ſE.g. known process structure info leak 



Heap / Stack Hardening 

ÅCookie introduced to the kernel stack 

ſAims to mitigate return address overwrite  

ÅMultiple hardenings to the kernel heap  

ſPointer validation  

ſBlock poisoning 

ſFreelist integrity verification  

ÅDescribed in more detail in « iOS 6 Kernel 
Security: A Hackerôs Guideè 



Attacking  the iOS Kernel 



evasi0n 

ÅUses a kernel vulnerability  to gain full control  of 
the OS kernel 

ſcom.apple.iokit.IOUSBDeviceFamily  

ÅPrimarily  required  to evade sandbox restrictions  
and code signing enforcement 

ÅArguably the most complex public  kernel exploit  
seen to date on iOS 

ſWritten  by David Wang (@planetbeing) 



IOUSBDeviceFamily 

ÅKernel extension enabling a device to 
communicate with  a host over USB 

ſE.g. to iTunes or accessory port devices 

ÅUsed by various applications and daemons 

ſPicture-transport -protocol  daemon 

ſMedia server daemon (usb audio streaming) 

ÅRepresents the device end, whereas 
IOUSBFamily  (OSX) represents the host end 



IOUSBDeviceInterface 

ÅIOKit  class used to represent a USB interface on a 
device 

ÅProvides a user client  for user space access 

ſIOUSBDeviceInterfaceUserClient 

ſExposes various methods to support USB interaction  

ÅCommonly accessed from a user-space library  
ſIOUSBDeviceFamily.kext/ PlugIns/ IOUSBDeviceLib.plugin  

ſImplemented  as a CFPlugIn extension  

ÅAccessible to tasks with  the USB entitlement  
(com.apple.security.device.usb) 

 



IOUSBDeviceInterface Interaction  

Application  

IOUSBDeviceLib 

IOUSBDeviceInterface 

User Space 

Kernel Space 

IOUSBDeviceFamily 

IOUSBDeviceInterfaceUserClient 

IOCreatePlugInInterface
ForService 



Pipe Translation 

ÅA pipe is the communication  channel between a 
host and a device endpoint  

ÅApplications normally  access pipes by their  
index value 

ſIndex 0: default  control  pipe 

ſGetNumEndpoints () on interface object 

ÅValue passed in as argument to user client  

ſTranslates pipe index to real pipe object 

ſPerforms operation with  pipe object 



Pipe Translation in IOUSBFamily (OSX) 

IOReturn   

IOUSBInterfaceUserClientV2:: ResetPipe (UInt8 pipeRef )  

{  

    IOUSBPipe     * pipeObj ;  

    IOReturn    ret;  

  

    ...  

  

    if ( fOwner  && ! isInactive ())  

    {  

  pipeObj  = GetPipeObj ( pipeRef );  

  if ( pipeObj )  

  {  

   ret = pipeObj - >Reset();  

   pipeObj - >release();  

  }  

  else  

   ret = kIOUSBUnknownPipeErr ;  

    }  

Pipe index translated to pipe 
object 

User client  takes pipe index 
(pipeRef) as input 

IOUSBFamily-540.4.1\ IOUSBUserClient\ Classes\ IOUSBInterfaceUserClient.cpp 



IOUSBDeviceFamily Vulnerability  

ÅThe IOUSBDeviceInteface user client  does not 
operate with  pipe index values 

ſPipe object pointers passed in directly  from user 
mode 

ÅMethods exposed by the user client  only check if  
the pipe object pointer is non -null  

ſE.g. read/ writePipe, abortPipe, and stallPipe 

ÅAn attacker can connect to the user client  and 
specify an arbitrary  pipe pointer  

 



IOUSBDeviceFamily Vulnerability  

Application  

User Space 

Kernel Space 

IOUSBDeviceFamily 

IOUSBDeviceInterfaceUserClient stallPipe() 

Malicious  
Pipe Object 



stallPipe() Disassembly #1 
0000:80660EE8 ; unsigned int  stallPipe ( int  interface, int  pipe)  

0000:80660EE8  

0000:80660EE8         PUSH            {R7,LR}  

0000:80660EEA         MOVW            R0, #0x2C2  

0000:80660EEE         MOV             R7, SP  

0000:80660EF0         MOVT.W          R0, #0xE000  

0000:80660EF4         CMP             R1, #0          // is pipe object pointer null?  

0000:80660EF6         IT EQ  

0000:80660EF8         POPEQ           {R7,PC}        // return if null  

0000:80660EFA         MOV             R0, R1  

0000:80660EFC         BL              __ stallPipe      // pass in as arg  if non - null  

0000:80660F00         MOVS            R0, #0  

0000:80660F02         POP             {R7,PC}  



stallPipe() Disassembly #2 
0000:8065FC60 __ stallPipe  

0000:8065FC60         LDR             R1, [R0,#0x28 ]  

0000:8065FC62         CMP             R1, #1          // check if active  

0000:8065FC64         IT NE  

0000:8065FC66         BXNE            LR  

0000:8065FC68         LDR             R2, [R0,#8]     // get object X from pipe object  

0000:8065FC6A         LDR             R1, [R0,#0x20]  // get value from pipe object  

0000:8065FC6C         MOV             R0, R2  

0000:8065FC6E         MOVS            R2, #1  

0000:8065FC70         B.W             sub_80661B70  



stallPipe() Disassembly #3 
0000:80661B70 ; int  sub_80661B70( int  interface)  

0000:80661B70  

0000:80661B70          PUSH            {R7,LR}  

0000:80661B72         MOV             R7, SP  

0000:80661B74         SUB             SP, SP, #8  

0000:80661B76         LDR.W           R9, [R0]         // get object Y from object X  

0000:80661B7A         MOV             R12, R2  

0000:80661B7C         LDR             R0, [R0,#0x50]  // get object Z from X (1st arg )  

0000:80661B7E         MOV             R2, R1          // 3rd arg  

0000:80661B80         LDR.W           R1, [R9,#0x344] // get value from Y (2nd arg )  

0000:80661B84         LDR             R3, [R0]        // object Z vtable  

0000:80661B86         LDR.W           R9, [R3,#0x70]  // get function from Z vtable  

0000:80661B8A         MOVS            R3, #0  

0000:80661B8C         STR             R3, [SP,#0x10+var_10]  

0000:80661B8E         STR             R3, [SP,#0x10+var_C]  

0000:80661B90         MOV             R3, R12  

0000:80661B92         BLX             R9              // call function  

0000:80661B94         ADD             SP, SP, #8  

0000:80661B96         POP             {R7,PC }  



stallPipe() Object Handling  

Pipe Object  

+8h object X 

é 

+20h  3rd arg  

é 

+28h  isActive 

Object X  

+0h  Object Y 

é 

+50h Object Z 

Object Y  

é 

+344h 2nd arg  

Object Z (1st arg)  

+0h  vtable 
function  

Object Z vtable  

é 

+70h function  

2nd argument to 
function  

1st argument to 
function  

3rd argument to 
function  

Potentially  attacker 
controlled  object 

Called by 
stallPipe() 



Exploitation  

ÅAn attacker who is able to control  the referenced 
memory can control  execution 

ÅOn iOS 5, the attacker could allocate memory in 
user-mode in order to fully  control  the object 

ſEasy win  

ÅOn iOS 6, user/ kernel address space separation 
does not allow this 

ſEvasi0n must find  a way to inject  user controlled  
data into  kernel memory 



Attack Strategy 

ÅInject  user controlled  data into  kernel memory 

ſNeed to control  the values of the fake pipe object 

ÅLearn the location of user controlled  data 

ſTypically  requires an information  disclosure 

ÅLearn the base address of the kernel 

ſRequired in order to patch sandbox and code 
signing checks 

ÅBuild  read and write  primitives  

ſArbitrary  read/ write  to kernel memory 



Information Disclosure 

ÅAn application  can request a memory mapping 
when interacting  with  IOUSBDeviceInterface 

ſSelector method 18 ï createData() 

ſProduces an IOMemoryMap  kernel object 

ÅThe IOMemoryMap  object address is returned  to 
the user as a «map token» 

ſObject addresses typically  used as 
handles/ identifiers  

ſkalloc(68) -> allocated in the kalloc.88 zone 



Information Disclosure 
uint64_t length  = 1024 ;  

uint64_t output[3];  

uint32_t outputCnt  = 3;  

 

rc  = IOConnectCallScalarMethod ( dataPort , 18, &length, 1, output, & outputCnt  );  

     

if ( KERN_SUCCESS != rc  )  

{  

    printf ( "Unable to map memory \ n" );  

    return 0;  

}  

     

printf ( "data ptr : %x \ n" , (uint32_t) output[0] );  

printf ( "capacity: %x \ n" , (uint32_t) output[1] );  

printf ( "map token: %x \ n" , (uint32_t) output[2] );  

data ptr : 446c000  

capacity: 1000  

map token: a48fb948  

Address in 
kalloc.88 zone 

IOUSBDeviceInterface 
user client  



Defragmenting the Kernel Heap 

ÅInformation disclosure is more useful with a 
predictable kernel heap 

ſCan be used to infer the location of user data 

ÅA defragmented (filled) heap is more predictable 

ſNew pages used for subsequent allocations 

¶Divided into equally sized chunks 

¶E.g. 88 bytes for kalloc.88 zone 

ſNew chunks served in a sequential manner 



Defragmenting the Kernel Heap 

Åevasi0n requests memory mappings until  the 
kernel heap is defragmented 

ſWaits until  it has 9 sequentially positioned 
IOMemoryMap  objects 

ÅSubsequent allocations assumed to fall directly  
next to the last IOMemoryMap  object 

ſTarget for user data injection  



Defragmenting the Kernel Heap 

Side 
Allocation  

IOMemory
Map 

Side 
Allocation  

IOMemory
Map 

Free Free Free 

IOUSBDeviceInterfaceUserClient 

createData() 

User data target 

kalloc.88 zone 
(88-byte memory chunks) 

Object address  
returned  to client  

Object address 
returned  to client  

Kernel Space 

evasi0n User Space Request memory 
mapping 

High Address Low Address 


