Attacking the 10SKernel:
AlLookat Oevasli Ono

Tarjel Mandt
tm@azimuthsecurity.com
@kernelpool

mailto:tm@azimuthsecurity.com

About Me

ASenior Security Researcher at Azimuth Security
ARecent focus on AppleiOS/OSX
APreviously done research on Windows
[Windows 8 Heap Internals (w/ Chris Valasek)
[http://mista.nu/blog
Aln the program committee of a few conferences
[WISA 2013 (http://www.wisa.or.kr)
[NSC (http://www.nosuchcon.org)
AMSc in Information Security from GUC J

http://mista.nu/blog
http://www.wisa.or.kr/
http://www.nosuchcon.org/

I0S6

AApple releasediOS 6 in iOS &
September 2012
ALarge focus on security improvements

[E.g. offers kernel address space layout
randomization (KASLR)

APrimarily targets strategies employed in
«jailbreaks»

AAdditional security improvements in i0S 6.1
[E.g. service hardening (list signing)

3rs evasion - iOS 6.0-6.1.2 Jailbreak

)

evasiOn Jailbreak

AFirst public jailbreak on i0S6
[Released February 2013
[http://www.evasiOn.com
AAllows users to run unsigned code without
sandbox restrictions
AComprises several components
[Injection vector, persistence (survive reboot), etc.

AKernel exploit used to gain full control of the
operating system

Talk Outline

APart 1:i0S 6 Kernel Security

| Kernel Address Space Layout Randomization
- Kernel Address Space Protection

" Information Leak Mitigations

APart 2: evasiOn Kernel Exploit

" Vulnerability

[Information Leaking Strategies

. Gaining Arbitrary Code Execution
' Exploitation Techniques

RecommendedReading

APresentations/Papers

[1I0S6 Ker nel Security: A H:
' Dion BlazakisT The Apple Sandbox

. Charlie Miller T Breaking iOS Code Signing

' Various I0S talks by Stefan Esser

ABooks

 IOSHacker 0s Handbook

A Guide to Kernel Exploitation: Attacking the Core

[OS X andiOS Kernel Programming

[Mac OSX andiOSI nt ernal s: To th

10S 6 Kernel Security

Attacking the I0OS Kernel

Kernel ASLR

AGoal

[Prevent attackers from modifying/utilizing data at
known addresses

AStrategy is two-fold
[Randomize kernel image base
[Randomize base ofkernel _map

Kernel ASLRo Kernel Image

AKernel base randomized by boot loader (Boot)
' Random data generated
- SHA-1 hash of data taken

' Byte from SHA-1 hash used to calculate kernel
slide

AKernel is rebased using the formula:
0x01000000 + (slide_byte * 0x00200000)
[If byte Is O, static offset of 0x21000000 is used

Kernel ASLRo Kernel Image

ACalculated value added to the kernel preferred
base later on
[Adjusted base = 0x80000000 + slide
AKernel can be rebased at 256 possible locations
[Base addresses are 2MB apart (ARM cache
optimization)
[Exampl e: 0x81200000, 0x38
OxA1000000
AAdjusted base passed to kernel via boot
argument structure

Kernel ASLRo Kernel Map

AUsed for kernel allocations of all types
[kalloc(), kernel_memory _allocate (), etc.
ASpans all of kernel space
[Ox80000000 -> OXFFFEFFFF
AKernel-based maps aresubmaps of kernel_map
[zone_map, ipc_kernel map , etc.
Alnitialized by kmem_init ()

Kernel ASLRo Kernel Map

AGoal: Make kernel map allocations less
predictable

AStrategy: Randomize the baseof the kernel map

| Random 9-bit value generated

- Multiplied by pagesize

' Resulting value used for initial kernel _map
allocation

[9 bits = 512 different allocation size possibilities

Kernel ASLRo Kernel Map

ASubsequentkernel_map (including submap)
allocations pushed forward by random amount

[Allocation silently removed after first garbage
collection

ABehavior can be overridden with «kmapoff»
boot parameter

Kernel ASLRo Kernel Map

0x80000000 i_“T(Fn_a_p_EJI:'f;;E_“ "\ kmap offset: 0 -> 2MB

Kernel Image

Stolen memo \ Kernel

OxFFEFFFFF W
OxFFFFOO00

Static
OxFFFF1000 Pages

i0S 6 Kernel Memory Layout

Kernel Address SpaceProtection

AGoal: Prevent usermode dereference
vulnerabilities (from kernel)
[E.g. offset-to-null
APreviously, kernel and user shared address space
ANULL -dereferences were prevented by forcing
binaries to have PAGE_ ZERO section
[Does not prevent dereferences above this section

Kernel Address SpaceProtection

Aln iOS 6, the kernel task has its own address
space while executing
[Transitioned to with interrupt handlers
[Switched between during copyin() / copyout()
AAlso configurable on 64-bit OSX with the
no shared cr3 boot argument
AUser-mode pages therefore not accessible while
executing in kernel mode

Kernel Address SpaceProtection

0x00000000 T 0x00000000

I |
| i
| |
User task | !
| (Unmapped) i
i |
' |
| |
I !

i0S 6 Process 0x80000000
Memory Layout

0x80000000

L Useraccessible

OXFFFF0O000 Wl Kernel-only accessible OxFFFFO000
OXFFFF1000 OxFFFF1000

Usermode Task Kernel Task

Kernel Address SpaceProtection

AARMvV6+ has two translation table base registers

[TTBRO: process specific addresses
[TTBR1: OS (kernel) and I/O addresses

AOniOS 6, TTBR1 is mirrored to TTBRO while the
kernel is executing

ATTBRO is set to process table duringcopyin() /

copyout()
[Also switches ASID to prevent cache leaks

Kernel Address SpaceProtection

AMemory is no longer RWX
' Kernel code cannot be directly patched
' Heap Is non-executable
| Stack is non-executable
ASyscalltable is no longer writable

[Moved into DATA const section

Information Leaking Mitigations

AGoals
[Prevent disclosure of kernel base
[Prevent disclosure of kernel heap addresses
A Strategies
| Disables some APIs
' Obfuscate kernel pointers for some APIs
| Zero out pointers for others

Information Leaking Mitigations

APrevious attacks relied on zone allocator status
disclosure
[host_zone info () / mach_zone_info ()
AAllowed attacker to determine the number of
allocations needed to fill a particular zone
[Used to defragment a heap
AAPIs now require debug access (configured
using boot argument)

Information Leaking Mitigations

ASeveral APIs disclose kernel object pointers
' mach_port_kobject ()

- mach_port_space _info ()

| vm_region_recurse ()

- vm_map_region_recurse ()

[proc_info(¢é&)

| fstat() (when querying pipes)

| sysctl(net.inet.* . pcblist)

Information Leaking Mitigations

ANeed these APIs for lots of reasons

[Often, underlying APIs rather than those
previously listed

ASome pointer values are used as unique
identifiers to user mode
[E.g. pipeinode number
AStrategy: Obfuscate pointers
[Generate random value at boot time
[Add random value to real pointer

Information Leaking Mitigations

i Generate random value
* |nitialize the global used for permuting kernel at boot time
* addresses that may be exported to userland as tokens
* using VM_KERNEL_ADDRPERM(). Force the random number

* to be odd to avoid mapping a non - zero
*word - aligned address to zero via addition. _
] Macro for obfuscating
vm_kernel_addrperm = (vm_offset_t)early_random() | 1; kernel pointers
#define VM_KERNEL_ADDRPERM() v -\
(((vm_offset_t)(_v) ==0) ? \
Example use: obfuscated (vm_offset_t)(0) : \
pipe object pointer (vm_offset_t)(_v) + vm_kernel_addrperm)

I* ™

* Return a relatively unique inode number based on the current
* address of this pipe's struct pipe. This number may be recycled
* relatively quickly.
*/
sb->st_ino = (ino_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);

Information Leaking Mitigations

AOther APIs disclose pointers unnecessarily
[Zero them out

AUsed to mitigate some leaks viasysctl()
[E.g. known process structure info leak

Heap/ Stack Hardening

ACookie introduced to the kernel stack
[Aims to mitigate return address overwrite

AMultiple hardenings to the kernel heap

' Pointer validation

' Block poisoning

' Freelist integrity verification

ADescribed in more detail in «iOS 6 Kernel
Security: A Hackeros Gul

evasiOn Kernel Exploit

Attacking the I0OS Kernel

evasiOon

AUsesa kernel vulnerability to gain full control of
the OSkernel
[com.apple.iokit.IOUSBDeviceFamily

APrimarily required to evadesandbox restrictions
and code signing enforcement

AArguably the most complex public kernel exploit
seento date on 10S
[Written by David Wang (@planetbeing)

IOUSBDeviceFamily

AKernel extension enabling a deviceto
communicate with a host over USB
[E.g. to ITunes oraccessoryport devices
AUsed byvarious applications and daemons
[Picture -transport -protocol daemon
[Media server daemon (usb audio streaming)

ARepresentsthe device end, whereas
IOUSBFamily (OSX) representsthe host end

|IOUSBDevicelnterface

AlOKit classused torepresent a USBinterface on a
device
A Provides a user client for user spaceaccess
[IOUSBDevicelnterfaceUserClient
[Exposesvarious methods to support USB interaction
A Commonly accessedrom a user-spacelibrary
[IO0USBDeviceFamily.kext/ Plugins/1IOUSBDevicelLib.plugin
[Implemented as aCFPlugln extension
A Accessibleto tasks with the USB entitlement
(com.apple.security.device.usb

|IOUSBDevicelnterfacelnteraction

User Space Application
|OCreatePluglninterface

ForService

IOUSBDeviceLib

IOUSBDevicelnterface

IOUSBDevicelnterfaceUserClient

IOUSBDeviceFamily

Kernel Space

Pipe Translation

AA pipe is the communication channel betweena
host and adevice endpoint

AApplications normally accesspipes by their
Index value
[Index O: default control pipe
[GetNumENdpoints () on interface object

AValue passedin as argument to user client
[Translates pipe index to real pipe object
[Performs operation with pipe object

Pipe Translation in IOUSBFamily(OSX)

IOReturn
IOUSBInterfaceUserClientV2:: ResetPipe (UInt8 pipeRef)
{
IOUSBPIpe * pipeObj ;
IOReturn ret;
User client takes pipe index
(pipeRef) as input
if (fOwner &&! islnactive 0)
{
pipeObj = GetPipeObj (pipeRef);
Pipe index translated to pipe ¢ZLE QI ¢]/o=[01:] D]
object {
/. ret= pipeObj - >Reset();
pipeObj - >release();
}
else
ret= kIOUSBUnknownPipeErr ;
}

IOUSBFamily-540.4.1\ IOUSBUserClient\ Classes IOUSBInterfaceUserClient.cpp

|OUSBDeviceFamilyWulnerabllity

AThe IOUSBDevicelnteface user client does not
operate with pipe index values

[Pipe object pointers passedin directly from user
mode

AMethods exposedby the user client only check if
the pipe object pointer is non -null
[E.g.read/ writePipe, abortPipe, and stallPipe
AAn attacker can connect to the user client and
specify an arbitrary pipe pointer

|OUSBDeviceFamilyWulnerabllity

User Space

Malicious
Pipe Object

IOUSBDevicelnterfaceUserClient stallPipe()

IOUSBDeviceFamily

Kernel Space

stallPipe () Disassembly#1

0000:80660EES ; unsigned int stallPipe (int interface, int pipe)
0000:80660EES8

0000:80660EES PUSH {R7,LR}

0000:80660EEA MOVW RO, #0x2C2

0000:80660EEE MOV R7, SP

0000:80660EFO0 MOVT.W RO, #0xE000

0000:80660EF4 CMP R1, #0 /I is pipe object pointer null?
0000:80660EF6 ITEQ

0000:80660EF8 POPEQ {R7,PC} I return if null
0000:80660EFA MOV RO, R1

0000:80660EFC BL . stallPipe /I pass in as arg if non-null
0000:80660F00 MOVS RO, #0

0000:80660F02 POP {R7,PC}

stallPipe () Disassembly#2

0000:8065FC60 __ stallPipe

0000:8065FC60 LDR R1, [RO,#0x28]
0000:8065FC62 CMP R1, #1 /I check if active
0000:8065FC64 IT NE

0000:8065FC66 BXNE LR

0000:8065FC68 LDR R2, [RO,#8] /I get object X from pipe object
0000:8065FC6A LDR R1, [RO,#0x20] // get value from pipe object
0000:8065FC6C MOV RO, R2

0000:8065FC6E MOVS R2, #1

0000:8065FC70 B.W sub_80661B70

stallPipe () Disassembly#3

0000:80661B70 ; int sub_80661B70(int interface)

0000:80661B70

0000:80661B70 PUSH {R7,LR}

0000:80661B72 MOV R7, SP

0000:80661B74 SuUB SP, SP, #8

0000:80661B76 LDR.W R9, [RO] /I get object Y from object X
0000:80661B7A MOV R12, R2

0000:80661B7C LDR RO, [RO,#0x50] /I get object Zfrom X (1st arg)
0000:80661B7E MOV R2, R1 /[3rd arg

0000:80661B80 LDR.W R1, [R9,#0x344] // get value from Y (2nd arg)
0000:80661B84 LDR R3, [RO] I/l objectZz vtable
0000:80661B86 LDR.W R9, [R3,#0x70] /I get function from Z vtable
0000:80661B8A MOVS R3, #0

0000:80661B8C STR R3, [SP,#0x10+var_10]

0000:80661B8E STR R3, [SP,#0x10+var_C]

0000:80661B90 MOV R3, R12

0000:80661B92 BLX R9 /[call function

0000:80661B94 ADD SP, SP, #8

0000:80661B96 POP {R7,PC}

stallPipe () Object Handling

Potentially attacker A 4 v 2nd argument to
controlled object Object X Object Y function

é
+344h 2nd arg

; +0h Object Y
Pipe Object &

+50h Object Z

+8h object X

é
+20h 3rd arg

-~ IEEEEEEEEEEEEESR

I‘..

Object Z (1st arg) Object Z vtable

+0h vtable é
pnn LLLL function
b +70h function *-

Called by

> \

+28h iSActive

3rd argument to
function

1st argument to stallPipe()

function

Exploitation

AAn attacker who is able to control the referenced
memory can control execution

AOn iOS 5, the attacker could allocate memory in
user-mode in order to fully control the object
[Easywin

AOn iOS 6, user/ kernel address spaceseparation
doesnot allow this

[EvasiOn must find a way to inject user controlled
data into kernel memory

Attack Strategy

Alnject user controlled data into kernel memory
[Needto control the values of the fake pipe object
AlLearn the location of user controlled data
[Typically requires an information disclosure
AlLearn the baseaddressof the kernel
[Required in order to patch sandbox and code
signing checks
ABuild read and write primitives
[Arbitrary read/write to kernel memory

Information Disclosure

AAn application canrequestamemory mapping
when interacting with IOUSBDevicelnterface
[Selectormethod 1871 createData()
[Producesan IOMemoryMap kernel object

AThe IOMemoryMap object addressis returned to
the user as a «map token»

[Object addressestypically used as
handles/identifiers

[kalloc(68) -> allocated in the kalloc.88 zone

Information Disclosure

uinté4 t length =1024 ;

uint64_t output[3]; IOUSBDevicelnterface
uint32_t outputCnt = 3; user client
rc = I0ConnectCallScalarMethod (dataPort , 18, &length, 1, output, & outputCnt);
if (KERN_SUCCESS != rc)
{
printf ("Unable to map memory \n"); data ptr :446¢c000
return O; capacity: 1000
} map token: a48fbh948

printt ("data ptr :%x \ n", (Uint32_t) output[0]);
printf (“"capacity: %x \ n", (uint32_t) output[1]);
printt ("map token: %x \ n", (uint32_t) output[2]);

Addressin

kalloc.88 zone

Defragmenting the Kernel Heap

Alnformation disclosure is more useful with a
predictable kernel heap
[Can be used to Iinfer the location of user data

AA defragmented (filled) heap is more predictable

[New pages used for subsequent allocations
1 Divided into equally sized chunks

1 E.g. 88 bytes for kalloc.88 zone

[New chunks servedin a sequential manner

Defragmenting the Kernel Heap

AevasiOn requests memory mappings until the
kernel heapis defragmented

[Waits until it has 9 sequentially positioned
|IOMemoryMap objects

ASubsequentallocations assumedto fall directly
next to the last IOMemoryMap object
[Target for user data injection

Defragmenting the Kernel Heap

User Space Requestmemory

mapping

Kernel Space

Low Address User data target

IOMemory Side IOMemory Side
Map Allocation Map Allocation

kalloc.88 zone Object address Object address
(88-byte memory chunks) returned to client returned to client

