
Attacking the iOS Kernel:

A Look at ôevasi0nõ
Tarjei Mandt

tm@azimuthsecurity.com

@kernelpool

mailto:tm@azimuthsecurity.com

About Me

ÅSenior Security Researcher at Azimuth Security

ÅRecent focus on Apple iOS/OSX

ÅPreviously done research on Windows

ſWindows 8 Heap Internals (w/ Chris Valasek)

ſhttp://mista.nu/blog

ÅIn the program committee of a few conferences

ſWISA 2013 (http://www.wisa.or.kr)

ſNSC (http://www.nosuchcon.org)

ÅMSc in Information Security from GUC J

http://mista.nu/blog
http://www.wisa.or.kr/
http://www.nosuchcon.org/

iOS 6

ÅApple released iOS 6 in
September 2012

ÅLarge focus on security improvements

ſE.g. offers kernel address space layout
randomization (KASLR)

ÅPrimarily targets strategies employed in
«jailbreaks»

ÅAdditional security improvements in iOS 6.1

ſE.g. service hardening (plist signing)

evasi0n Jailbreak

ÅFirst public jailbreak on iOS 6

ſReleased February 2013

ſhttp://www.evasi0n.com

ÅAllows users to run unsigned code without
sandbox restrictions

ÅComprises several components

ſInjection vector, persistence (survive reboot), etc.

ÅKernel exploit used to gain full control of the
operating system

Talk Outline

ÅPart 1: iOS 6 Kernel Security

ſKernel Address Space Layout Randomization

ſKernel Address Space Protection

ſInformation Leak Mitigations

ÅPart 2: evasi0n Kernel Exploit

ſVulnerability

ſInformation Leaking Strategies

ſGaining Arbitrary Code Execution

ſExploitation Techniques

Recommended Reading

ÅPresentations/Papers
ſiOS 6 Kernel Security: A Hackerôs Guide
ſDion Blazakis ï The Apple Sandbox
ſCharlie Miller ï Breaking iOS Code Signing
ſVarious iOS talks by Stefan Esser

ÅBooks
ſiOS Hackerôs Handbook
ſA Guide to Kernel Exploitation: Attacking the Core
ſOS X and iOS Kernel Programming
ſMac OSX and iOS Internals: To the Appleôs Core

Attacking the iOS Kernel

Kernel ASLR

ÅGoal

ſPrevent attackers from modifying/utilizing data at
known addresses

ÅStrategy is two-fold

ſRandomize kernel image base

ſRandomize base of kernel_map

Kernel ASLR ð Kernel Image

ÅKernel base randomized by boot loader (iBoot)

ſRandom data generated

ſSHA-1 hash of data taken

ſByte from SHA-1 hash used to calculate kernel
slide

ÅKernel is rebased using the formula:
0x01000000 + (slide_byte * 0x00200000)

ſIf byte is 0, static offset of 0x21000000 is used

Kernel ASLR ð Kernel Image

ÅCalculated value added to the kernel preferred
base later on
ſAdjusted base = 0x80000000 + slide

ÅKernel can be rebased at 256 possible locations
ſBase addresses are 2MB apart (ARM cache

optimization)
ſExample: 0x81200000, 0x81400000, é

0xA1000000

ÅAdjusted base passed to kernel via boot
argument structure

Kernel ASLR ð Kernel Map

ÅUsed for kernel allocations of all types

ſkalloc(), kernel_memory_allocate (), etc.

ÅSpans all of kernel space

ſ0x80000000 -> 0xFFFEFFFF

ÅKernel-based maps are submaps of kernel_map

ſzone_map, ipc_kernel_map , etc.

ÅInitialized by kmem_init ()

Kernel ASLR ð Kernel Map

ÅGoal: Make kernel map allocations less
predictable

ÅStrategy: Randomize the base of the kernel map

ſRandom 9-bit value generated

ſMultiplied by page size

ſResulting value used for initial kernel_map
allocation

ſ9 bits = 512 different allocation size possibilities

Kernel ASLR ð Kernel Map

ÅSubsequent kernel_map (including submap)
allocations pushed forward by random amount

ſAllocation silently removed after first garbage
collection

ÅBehavior can be overridden with «kmapoff»
boot parameter

Kernel ASLR ð Kernel Map

Kernel Address Space Protection

ÅGoal: Prevent user-mode dereference
vulnerabilities (from kernel)

ſE.g. offset-to-null

ÅPreviously, kernel and user shared address space

ÅNULL -dereferences were prevented by forcing
binaries to have __PAGE_ZERO section

ſDoes not prevent dereferences above this section

Kernel Address Space Protection

ÅIn iOS 6, the kernel task has its own address
space while executing

ſTransitioned to with interrupt handlers

ſSwitched between during copyin() / copyout()

ÅAlso configurable on 64-bit OSX with the
no_shared_cr3 boot argument

ÅUser-mode pages therefore not accessible while
executing in kernel mode

Kernel Address Space Protection

Kernel Address Space Protection

ÅARMv6+ has two translation table base registers

ſTTBR0: process specific addresses

ſTTBR1: OS (kernel) and I/O addresses

ÅOn iOS 6, TTBR1 is mirrored to TTBR0 while the
kernel is executing

ÅTTBR0 is set to process table during copyin() /
copyout()

ſAlso switches ASID to prevent cache leaks

Kernel Address Space Protection

ÅMemory is no longer RWX

ſKernel code cannot be directly patched

ſHeap is non-executable

ſStack is non-executable

ÅSyscall table is no longer writable

ſMoved into DATA const section

Information Leaking Mitigations

ÅGoals

ſPrevent disclosure of kernel base

ſPrevent disclosure of kernel heap addresses

ÅStrategies

ſDisables some APIs

ſObfuscate kernel pointers for some APIs

ſZero out pointers for others

Information Leaking Mitigations

ÅPrevious attacks relied on zone allocator status
disclosure

ſhost_zone_info () / mach_zone_info ()

ÅAllowed attacker to determine the number of
allocations needed to fill a particular zone

ſUsed to defragment a heap

ÅAPIs now require debug access (configured
using boot argument)

Information Leaking Mitigations

ÅSeveral APIs disclose kernel object pointers

ſmach_port_kobject ()

ſmach_port_space_info ()

ſvm_region_recurse ()

ſvm_map_region_recurse ()

ſproc_info(é)

ſfstat() (when querying pipes)

ſsysctl(net.inet.* . pcblist)

Information Leaking Mitigations

ÅNeed these APIs for lots of reasons

ſOften, underlying APIs rather than those
previously listed

ÅSome pointer values are used as unique
identifiers to user mode

ſE.g. pipe inode number

ÅStrategy: Obfuscate pointers

ſGenerate random value at boot time

ſAdd random value to real pointer

Information Leaking Mitigations
/*

 * Initialize the global used for permuting kernel

 * addresses that may be exported to userland as tokens

 * using VM_KERNEL_ADDRPERM(). Force the random number

 * to be odd to avoid mapping a non - zero

 * word - aligned address to zero via addition.

 */

vm_kernel_addrperm = (vm_offset_t)early_random() | 1;

#define VM_KERNEL_ADDRPERM(_v) \

 (((vm_offset_t)(_v) == 0) ? \

 (vm_offset_t)(0) : \

 (vm_offset_t)(_v) + vm_kernel_addrperm)

/*

 * Return a relatively unique inode number based on the current

 * address of this pipe's struct pipe. This number may be recycled

 * relatively quickly.

 */

sb - >st_ino = (ino_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);

Example use: obfuscated
pipe object pointer

Macro for obfuscating
kernel pointers

Generate random value
at boot time

Information Leaking Mitigations

ÅOther APIs disclose pointers unnecessarily

ſZero them out

ÅUsed to mitigate some leaks via sysctl()

ſE.g. known process structure info leak

Heap / Stack Hardening

ÅCookie introduced to the kernel stack

ſAims to mitigate return address overwrite

ÅMultiple hardenings to the kernel heap

ſPointer validation

ſBlock poisoning

ſFreelist integrity verification

ÅDescribed in more detail in « iOS 6 Kernel
Security: A Hackerôs Guideè

Attacking the iOS Kernel

evasi0n

ÅUses a kernel vulnerability to gain full control of
the OS kernel

ſcom.apple.iokit.IOUSBDeviceFamily

ÅPrimarily required to evade sandbox restrictions
and code signing enforcement

ÅArguably the most complex public kernel exploit
seen to date on iOS

ſWritten by David Wang (@planetbeing)

IOUSBDeviceFamily

ÅKernel extension enabling a device to
communicate with a host over USB

ſE.g. to iTunes or accessory port devices

ÅUsed by various applications and daemons

ſPicture-transport -protocol daemon

ſMedia server daemon (usb audio streaming)

ÅRepresents the device end, whereas
IOUSBFamily (OSX) represents the host end

IOUSBDeviceInterface

ÅIOKit class used to represent a USB interface on a
device

ÅProvides a user client for user space access

ſIOUSBDeviceInterfaceUserClient

ſExposes various methods to support USB interaction

ÅCommonly accessed from a user-space library
ſIOUSBDeviceFamily.kext/ PlugIns/ IOUSBDeviceLib.plugin

ſImplemented as a CFPlugIn extension

ÅAccessible to tasks with the USB entitlement
(com.apple.security.device.usb)

IOUSBDeviceInterface Interaction

Application

IOUSBDeviceLib

IOUSBDeviceInterface

User Space

Kernel Space

IOUSBDeviceFamily

IOUSBDeviceInterfaceUserClient

IOCreatePlugInInterface
ForService

Pipe Translation

ÅA pipe is the communication channel between a
host and a device endpoint

ÅApplications normally access pipes by their
index value

ſIndex 0: default control pipe

ſGetNumEndpoints () on interface object

ÅValue passed in as argument to user client

ſTranslates pipe index to real pipe object

ſPerforms operation with pipe object

Pipe Translation in IOUSBFamily (OSX)

IOReturn

IOUSBInterfaceUserClientV2:: ResetPipe (UInt8 pipeRef)

{

 IOUSBPipe * pipeObj ;

 IOReturn ret;

 ...

 if (fOwner && ! isInactive ())

 {

 pipeObj = GetPipeObj (pipeRef);

 if (pipeObj)

 {

 ret = pipeObj - >Reset();

 pipeObj - >release();

 }

 else

 ret = kIOUSBUnknownPipeErr ;

 }

Pipe index translated to pipe
object

User client takes pipe index
(pipeRef) as input

IOUSBFamily-540.4.1\ IOUSBUserClient\ Classes\ IOUSBInterfaceUserClient.cpp

IOUSBDeviceFamily Vulnerability

ÅThe IOUSBDeviceInteface user client does not
operate with pipe index values

ſPipe object pointers passed in directly from user
mode

ÅMethods exposed by the user client only check if
the pipe object pointer is non -null

ſE.g. read/ writePipe, abortPipe, and stallPipe

ÅAn attacker can connect to the user client and
specify an arbitrary pipe pointer

IOUSBDeviceFamily Vulnerability

Application

User Space

Kernel Space

IOUSBDeviceFamily

IOUSBDeviceInterfaceUserClient stallPipe()

Malicious
Pipe Object

stallPipe() Disassembly #1
0000:80660EE8 ; unsigned int stallPipe (int interface, int pipe)

0000:80660EE8

0000:80660EE8 PUSH {R7,LR}

0000:80660EEA MOVW R0, #0x2C2

0000:80660EEE MOV R7, SP

0000:80660EF0 MOVT.W R0, #0xE000

0000:80660EF4 CMP R1, #0 // is pipe object pointer null?

0000:80660EF6 IT EQ

0000:80660EF8 POPEQ {R7,PC} // return if null

0000:80660EFA MOV R0, R1

0000:80660EFC BL __ stallPipe // pass in as arg if non - null

0000:80660F00 MOVS R0, #0

0000:80660F02 POP {R7,PC}

stallPipe() Disassembly #2
0000:8065FC60 __ stallPipe

0000:8065FC60 LDR R1, [R0,#0x28]

0000:8065FC62 CMP R1, #1 // check if active

0000:8065FC64 IT NE

0000:8065FC66 BXNE LR

0000:8065FC68 LDR R2, [R0,#8] // get object X from pipe object

0000:8065FC6A LDR R1, [R0,#0x20] // get value from pipe object

0000:8065FC6C MOV R0, R2

0000:8065FC6E MOVS R2, #1

0000:8065FC70 B.W sub_80661B70

stallPipe() Disassembly #3
0000:80661B70 ; int sub_80661B70(int interface)

0000:80661B70

0000:80661B70 PUSH {R7,LR}

0000:80661B72 MOV R7, SP

0000:80661B74 SUB SP, SP, #8

0000:80661B76 LDR.W R9, [R0] // get object Y from object X

0000:80661B7A MOV R12, R2

0000:80661B7C LDR R0, [R0,#0x50] // get object Z from X (1st arg)

0000:80661B7E MOV R2, R1 // 3rd arg

0000:80661B80 LDR.W R1, [R9,#0x344] // get value from Y (2nd arg)

0000:80661B84 LDR R3, [R0] // object Z vtable

0000:80661B86 LDR.W R9, [R3,#0x70] // get function from Z vtable

0000:80661B8A MOVS R3, #0

0000:80661B8C STR R3, [SP,#0x10+var_10]

0000:80661B8E STR R3, [SP,#0x10+var_C]

0000:80661B90 MOV R3, R12

0000:80661B92 BLX R9 // call function

0000:80661B94 ADD SP, SP, #8

0000:80661B96 POP {R7,PC }

stallPipe() Object Handling

Pipe Object

+8h object X

é

+20h 3rd arg

é

+28h isActive

Object X

+0h Object Y

é

+50h Object Z

Object Y

é

+344h 2nd arg

Object Z (1st arg)

+0h vtable
function

Object Z vtable

é

+70h function

2nd argument to
function

1st argument to
function

3rd argument to
function

Potentially attacker
controlled object

Called by
stallPipe()

Exploitation

ÅAn attacker who is able to control the referenced
memory can control execution

ÅOn iOS 5, the attacker could allocate memory in
user-mode in order to fully control the object

ſEasy win

ÅOn iOS 6, user/ kernel address space separation
does not allow this

ſEvasi0n must find a way to inject user controlled
data into kernel memory

Attack Strategy

ÅInject user controlled data into kernel memory

ſNeed to control the values of the fake pipe object

ÅLearn the location of user controlled data

ſTypically requires an information disclosure

ÅLearn the base address of the kernel

ſRequired in order to patch sandbox and code
signing checks

ÅBuild read and write primitives

ſArbitrary read/ write to kernel memory

Information Disclosure

ÅAn application can request a memory mapping
when interacting with IOUSBDeviceInterface

ſSelector method 18 ï createData()

ſProduces an IOMemoryMap kernel object

ÅThe IOMemoryMap object address is returned to
the user as a «map token»

ſObject addresses typically used as
handles/ identifiers

ſkalloc(68) -> allocated in the kalloc.88 zone

Information Disclosure
uint64_t length = 1024 ;

uint64_t output[3];

uint32_t outputCnt = 3;

rc = IOConnectCallScalarMethod (dataPort , 18, &length, 1, output, & outputCnt);

if (KERN_SUCCESS != rc)

{

 printf ("Unable to map memory \ n");

 return 0;

}

printf ("data ptr : %x \ n" , (uint32_t) output[0]);

printf ("capacity: %x \ n" , (uint32_t) output[1]);

printf ("map token: %x \ n" , (uint32_t) output[2]);

data ptr : 446c000

capacity: 1000

map token: a48fb948

Address in
kalloc.88 zone

IOUSBDeviceInterface
user client

Defragmenting the Kernel Heap

ÅInformation disclosure is more useful with a
predictable kernel heap

ſCan be used to infer the location of user data

ÅA defragmented (filled) heap is more predictable

ſNew pages used for subsequent allocations

¶Divided into equally sized chunks

¶E.g. 88 bytes for kalloc.88 zone

ſNew chunks served in a sequential manner

Defragmenting the Kernel Heap

Åevasi0n requests memory mappings until the
kernel heap is defragmented

ſWaits until it has 9 sequentially positioned
IOMemoryMap objects

ÅSubsequent allocations assumed to fall directly
next to the last IOMemoryMap object

ſTarget for user data injection

Defragmenting the Kernel Heap

Side
Allocation

IOMemory
Map

Side
Allocation

IOMemory
Map

Free Free Free

IOUSBDeviceInterfaceUserClient

createData()

User data target

kalloc.88 zone
(88-byte memory chunks)

Object address
returned to client

Object address
returned to client

Kernel Space

evasi0n User Space Request memory
mapping

High Address Low Address

